

We Put Science To Work

Integration of System Components and Phenomena through Multiscale Modeling and Abstraction: Savannah River Examples

Greg Flach July 14, 2009 Salt Lake City

Performance Assessment Community of Practice Technical Exchange Meeting

Modeling the Performance of Engineered Systems for Closure and Near-Surface Disposal

SRNL-STI-2009-00445

Integration Challenges

- Multiple scales
 - groundwater plume (~100 m)
 - vadoze zone (~10 m)
 - components of engineered system (~0.1 to 1 m)
 - smaller features such as fractures, aggregates, pores (<0.1 m)
- Multiple phenomena (complex / demanding)
 - physical
 - chemical

Difficult to incorporate all scales & phenomena into single model

Integration Approaches

- Couple multiple models
 - various scales and phenomena
 - coupling can be loose or tight
- Abstract or simplify full physics models, e.g.
 - apparent Kd
 - effective hydraulic properties
 - response surface / table
 - analytic approximation
 - lower dimensionality

Typical PA Modeling Practice at Savannah River

- Vadose Zone (2D near field) and Aquifer (3D far field) models for flow and transport
- Single-domain porous medium formulation (e.g. fractures / cracks treated as sand or gravel seam)
- Auxiliary analysis of geochemical environment (e.g. GeoChemist's Workbench)
- Kd w/o or w/ solubility limits
 - value based on pH and Eh regimes
 - timing based on pore volumes flushed
- More abstractions for probabilistic analysis

PA Practice - Sensitivity and Uncertainty Analysis

- Deterministic sensitivity calculations for specific cases
- Deterministic model abstracted for probabilistic analysis
- Probabilistic analysis used to provide more comprehensive view of sensitivity/uncertainty
- <u>Hybrid approach</u> combining detailed deterministic and simplified probabilistic models provides useful check and balance and multiple lines of reasoning

SRNL

SRNL-STI-2009-00445

Some Better Examples of Abstraction and Coupling

- Effective properties of cracked concrete under <u>unsaturated</u> conditions - 2009 Saltstone PA (draft)
- Abstraction of ~full physics external sulfate attack model 2009 Saltstone PA (draft)
- Small scale diffusion from concrete rubble coupled to larger scale vadose zone transport - 2005 E-area Special Analysis (SA)

Saturated fracture:

Fractures typically dominate saturated transport

Unsaturated fracture:

Fractures typically "dewater" at low suctions

Or and Tuller (2000): **Isolated Pit** (b) (a) a) Wet fracture surface of Apache Leap Tuff (Arizona) b) Idealized Connected geometry

WATER RESOURCES RESEARCH, VOL. 36, NO. 5, PAGES 1165-1177

SRNL-STI-2009-00445

9

Surface

Groove

Or and Tuller (2000) continued:

Figure 1. Definition sketch for a unit element representing unsaturated fracture surface with a single pit of depth L and angle γ . Liquid-vapor interfaces are functions of the matric potential μ , which determines the radius of curvature in the pit $r(\mu)$ and film thickness $h(\mu)$. The inset represents the partially saturated porous rock matrix forming the fracture; water in the rock matrix pore space is in equilibrium with water on the fracture surface.

SRNL-STI-2009-00445

10

Example				
crack	Parameter	Symbol	Value	Units
CIACK		(Or and Tuller 2000)		
parameters	ratio of pit spacing to pit depth	b	1	unitless
	pit connectivity factor	δ	1	unitless
	pit angle	Y	60	deg
	pit depth	L	5.0E-04	m
			0.500	mm
			0.020	in
	width of unit element	W	1.08E-03	m
	aperture	b	1.27E-03	m
			0.05	in
			50	mil
			1.27	mm
			1270	micron
	spacing between fractures	В	1	m
			100	cm
	saturated matrix conductivity	K	3.1E-12	m/s
			3.1E-10	cm/s

13

Saltstone Facility:

- Salt waste mixed with dry grout to form "Saltstone"
- ~0.1 mol/L SO_4^{2-} in feedwater

 Sulfate attack identified as primary concrete degradation mechanism

SRNL-STI-2009-00445

Approach:

- STADIUM[®] code used to predict formation of ettringite (coupled chemistry and transport analysis of major dissolved and solid species)
- Simple damage model (baseline)
 - Ettringite = physical damage (e.g. cracking, spalling)
 - Transport properties not affected by ettringite front
- Effective hydraulic properties by averaging

STADIUM[®] code:

- Multi-ionic transport model based on a split operator approach that separates ionic movement and chemical reactions
- Ionic transport is described by the extended Nernst-Planck equation applied to unsaturated media
- Accounts for the electrical coupling between ionic species, chemical activity, transport due to water content gradient, and temperature effects
- <u>http://www.mslexperts.com/slm/stadium_help/index.html</u> for more information

STADIUM[®] validation: Maltais, Samson and Marchand (2004)

Abstraction:

 Ettringite formation controlled by reaction capacity of concrete, R, and diffusion to front

$R \frac{dx}{dt} =$	$\frac{nD_ec}{nD_ec}$
dt	X
reactant	reactant
consumption	delivery
rate	rate

• Analytic solution for ettringite front $angle = \frac{1}{2}$

$$\mathbf{x} = \left[\frac{2n\mathbf{D}_{e}ct}{R}\right]^{1}$$

19

Deduce reaction capacity from full-physics STADIUM simulation:

Generalize for varying conditions:

Lump fixed parameters

$$x = Ac^{B} \sqrt{\frac{D_{e}}{D_{ref}}} \sqrt{t}$$

Assume time-dependent parameters in penetration rate

$$\frac{\mathrm{dx}}{\mathrm{dt}} = \mathrm{Ac(t)}^{\mathrm{B}} \sqrt{\frac{\mathrm{D}_{\mathrm{e}}(\mathrm{t})}{\mathrm{D}_{\mathrm{ref}}}} \frac{1}{2\sqrt{\mathrm{t}}}$$

Integrate (numerically in practice)

$$\mathbf{x} = \int_{0}^{T} \mathbf{A}\mathbf{c}(t)^{B} \sqrt{\frac{\mathbf{D}_{e}(t)}{\mathbf{D}_{ref}}} \frac{1}{2\sqrt{t}} dt$$

21

SRNL-STI-2009-00445

Building 232-F rubble:

- Former tritium extraction facility
- D&D produced concrete rubble contaminated with HTO moisture
- Onsite disposal in E-area Slit Trenches
- Accurate analysis needed to show compliance with performance objectives

SRNL-STI-2009-00445

Disposal trench:

- Heterogeneous mixture of coarse aggregate sizes,
- shapes, and internal tritium (v) shapes, and internal tri Diffusional release from
- Advective transport from (~ 10 m length scale)

SRNL-STI-2009-00445

25

- "Unsteady" dual-porosity formulation:
- 1D slab surrogate for 3D coarse aggregate
- 1D diffusion in immobile domain (concrete slab)
- 2D advection / dispersion in mobile domain (soil)
- Iterative coupling through soil concentration C(t) and waste flux F(t)

SRNL-STI-2009-00445

Opportunities for Improvement

- Coupled equilibrium chemistry and solute transport
- Dual-domain transport formulation
- What else?

