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Integration Challenges

• Multiple scales

d t  l  ( 100 )• groundwater plume (~100 m)

• vadoze zone (~10 m)

• components of engineered system (~0.1 to 1 m)

• smaller features such as fractures, aggregates, pores (<0.1 m)

• Multiple phenomena (complex / demanding)

• physicalp y

• chemical

Difficult to incorporate all scales & phenomena into single model
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Difficult to incorporate all scales & phenomena into single model



Integration Approaches

• Couple multiple models

i  l  d h• various scales and phenomena

• coupling can be loose or tight

• Abstract or simplify full physics models, e.g.

• apparent Kd

• effective hydraulic properties

• response surface / tablep

• analytic approximation

• lower dimensionality
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• lower dimensionality



Typical PA Modeling Practice at Savannah River

• Vadose Zone (2D near field) and Aquifer (3D far field) models for 
flow and transportp

• Single-domain porous medium formulation 
(e.g. fractures / cracks treated as sand or gravel seam)

• Auxiliary analysis of geochemical environment
(e.g. GeoChemist's Workbench)

• Kd w/o or w/ solubility limits

• value based on pH and Eh regimesp g

• timing based on pore volumes flushed

• More abstractions for probabilistic analysis
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PA Practice - Sensitivity and Uncertainty Analysis

• Deterministic sensitivity 
calculations for specific cases MeanAbstraction

Dose vs. Limit

HYBRIDHYBRID
p

• Deterministic model abstracted 
for probabilistic analysis

C li ?

Simplified
Time

5%
95%
limit

BenchmarkTime (yr)

Detailed

• Probabilistic analysis used to 
provide more comprehensive view 

f /

Compliance?

Idaho Exampleof sensitivity/uncertainty

• Hybrid approach combining 
detailed deterministic and 

Idaho Example

detailed deterministic and 
simplified probabilistic models 
provides useful check and balance 
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and multiple lines of reasoning



Some Better Examples of Abstraction and Coupling

• Effective properties of cracked concrete under unsaturated
conditions - 2009 Saltstone PA (draft)( )

• Abstraction of ~full physics external sulfate attack model - 2009 
Saltstone PA (draft)

• Small scale diffusion from concrete rubble coupled to larger 
scale vadose zone transport - 2005 E-area Special Analysis (SA)
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Effective Hydraulic Properties of Cracked Concrete

Saturated fracture:
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Effective Hydraulic Properties of Cracked Concrete

Unsaturated fracture: Fractures typically "dewater" at low suctions
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Effective Hydraulic Properties of Cracked Concrete

Or and Tuller (2000):

a) Wet 
fracture 
surface ofsurface of 
Apache Leap 
Tuff (Arizona)

b) Id li db) Idealized 
geometry
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Effective Hydraulic Properties of Cracked Concrete

Or and Tuller (2000) continued:
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Effective Hydraulic Properties of Cracked Concrete

Saturated flow
2σ

Three flow regimes:
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Effective Hydraulic Properties of Cracked Concrete

B b
Combined matrix and fracture flow:
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matrix flow fracture flow



Effective Hydraulic Properties of Cracked Concrete

Example
crack
parameters
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Effective Hydraulic Properties of Cracked Concrete
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External Sulfate Attack on Concrete Barrier

Future 
disposal 

cells

Future 
disposal 

cells

Saltstone Facility:

S lt t  i d ith d  t

GroutGrout

• Salt waste mixed with dry grout
to form "Saltstone"

• ~0 1 mol/L  SO 2- in feedwater Grout
plant

Vault 4

Future 
disposal 

cells

Grout
plant

Vault 4

Future 
disposal 

cells

• ~0.1 mol/L  SO4
2 in feedwater

Vault 1

Vault 4

Vault 1

Vault 4

Vault 1Vault 1

• Sulfate attack identified as
primary concrete

15

SRNL-STI-2009-00445

degradation mechanism



External Sulfate Attack on Concrete Barrier

Approach:

STADIUM® d  d t  di t f ti  f tt i it• STADIUM® code used to predict formation of ettringite
(coupled chemistry and transport analysis of major dissolved 
and solid species)

ettringiteettringite

• Simple damage model (baseline)

• Ettringite = physical damage 

ettringite
front

ettringite
front

Ettringite  physical damage 
(e.g. cracking, spalling)

• Transport properties not 
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External Sulfate Attack on Concrete Barrier

STADIUM® code:

M lti i i  t t d l b d   lit t  h • Multi-ionic transport model based on a split operator approach 
that separates ionic movement and chemical reactions

• Ionic transport is described by the extended Nernst Planck • Ionic transport is described by the extended Nernst-Planck 
equation applied to unsaturated media

• Accounts for the electrical coupling between ionic species, Accounts for the electrical coupling between ionic species, 
chemical activity, transport due to water content gradient, and 
temperature effects

• http://www.mslexperts.com/slm/stadium_help/index.html for 
more information
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External Sulfate Attack on Concrete Barrier

STADIUM® validation:
Maltais, Samson and Marchand (2004), ( )

CSA Type 10
w/c 0.60

3 month exposure

0.05 mol/L 
Na2SO4

saturated 
conditions
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External Sulfate Attack on Concrete Barrier

Abstraction:

Ett i it  f ti  t ll d • Ettringite formation controlled 
by reaction capacity of concrete, 
R, and diffusion to front
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External Sulfate Attack on Concrete Barrier

Deduce reaction capacity from full-physics STADIUM simulation:
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External Sulfate Attack on Concrete Barrier

Generalize for varying conditions:

L  fi d t• Lump fixed parameters

t
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External Sulfate Attack on Concrete Barrier
Vault 2 Ettringite Front
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External Sulfate Attack on Concrete Barrier
Vault 2 Effective Properties
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Multiscale Solute Transport from Concrete Rubble

Building 232-F rubble:

F  t iti  t ti  f ilit• Former tritium extraction facility

• D&D produced concrete rubble 
contaminated with HTO contaminated with HTO 
moisture

• Onsite disposal in E-area Slit Onsite disposal in E area Slit 
Trenches

• Accurate analysis needed to y
show compliance with 
performance objectives
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Multiscale Solute Transport from Concrete Rubble

Disposal trench:

H t  i t  f • Heterogeneous mixture of 
coarse aggregate sizes, 
shapes, and internal tritium 
distributions

• Diffusional release from 
fconcrete to backfilled soil

(~ 0.1 m length scale)

Advective transport from • Advective transport from 
soil to water table
(~ 10 m length scale)
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Multiscale Solute Transport from Concrete Rubble

(geometric abstraction)"Unsteady" dual-porosity 
formulation:

• 1D slab surrogate for 3D 
coarse aggregate

• 1D diffusion in immobile 
domain (concrete slab)

• 2D advection / dispersion 
in mobile domain (soil)

• Iterative coupling through 
soil concentration C(t) and 
waste flux F(t)
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Multiscale Solute Transport from Concrete Rubble

2D soil
grid

1D concrete
grids

(isolated)(isolated)
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Multiscale Solute Transport from Concrete Rubble

Tritium release fromTritium release from 
overlying waste elevates soil 

concentration
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Multiscale Solute Transport from Concrete Rubble

Elevated soil concentrationElevated soil concentration 
depresses flux initially

Later flux is higher
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Multiscale Solute Transport from Concrete Rubble
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Opportunities for Improvement

• Coupled equilibrium chemistry and solute transport

D l d i  t t f l ti• Dual-domain transport formulation

• What else?
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